Unc-51 controls active zone density and protein composition by downregulating ERK signaling.
نویسندگان
چکیده
Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.
منابع مشابه
Development/Plasticity/Repair Unc-51 Controls Active Zone Density and Protein Composition by Downregulating ERK Signaling
Yogesh P. Wairkar,1 Hirofumi Toda,2,3 Hiroaki Mochizuki,3 Katsuo Furukubo-Tokunaga,3 Toshifumi Tomoda,2 and Aaron DiAntonio1 1Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri 63110, 2Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, and 3Graduate School of Life and Environmental Sciences, University o...
متن کاملThe effects of crocin on spatial memory impairment induced by hyoscine: Role of NMDA, AMPA, ERK, and CaMKII proteins in rat hippocampus
Objective(s): Crocus sativus L. and its active constituent, crocin, have neuroprotective effects. The effects of crocin on memory impairment have been mentioned in studies but the signaling pathways have not been evaluated. Therefore, the aim of this study was to evaluate the effects of crocin on the hyoscine-induced memory impairment in rat. Additionally, the level o...
متن کاملThe KIF1A homolog Unc-104 is important for spontaneous release, postsynaptic density maturation and perisynaptic scaffold organization
The kinesin-3 family member KIF1A has been shown to be important for experience dependent neuroplasticity. In Drosophila, amorphic mutations in the KIF1A homolog unc-104 disrupt the formation of mature boutons. Disease associated KIF1A mutations have been associated with motor and sensory dysfunctions as well as non-syndromic intellectual disability in humans. A hypomorphic mutation in the fork...
متن کاملP-111: EGFR, ERK, MEK Genes Expression Level in Cumulus Cells of PCOS Women Compared with Healthy Women
Background Poly cystic ovarian syndrome (PCOS) is known as a common endocrine disorder in women at reproductive ages and may cause developmental abnormality in oocyte. ERK has found as a regulator protein of Gap junctions (GJ) function and the level of exchanges between two neighbors cells, for example oocyte and surrounding cumulus cells (CCs) in the mammalian ovary. Such exchange is essential...
متن کاملNaringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells
Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 2 شماره
صفحات -
تاریخ انتشار 2009